If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2-9x-9=0
a = 40; b = -9; c = -9;
Δ = b2-4ac
Δ = -92-4·40·(-9)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-39}{2*40}=\frac{-30}{80} =-3/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+39}{2*40}=\frac{48}{80} =3/5 $
| n+51=117 | | 2(w-1)=-2w+34 | | 5x-(x+3)=1/(9x+18)-5 | | 2(4x-1)=4x-6 | | 35=5/9w | | 2(n+23)=56 | | 3x+1-4+(2x)=3 | | 5(x+2)=2+3(x+4)-4 | | -5/3x+9=2^(x-1) | | 6x-3=7x-8 | | 12+9n=48 | | 4x+3=25x-635 | | 1/7x+3=-6/7x-2 | | 45=8x-51 | | 2x=2x-4x | | 2a+6=12a= | | 3x+1=(4x)-5 | | -59=69+8x | | 12x+9x+105=180 | | -0.4a+3=7A= | | 7x+9x+10x=130 | | 5x2=13x+6 | | 9x+29=10x-16 | | 4-1/3x=10 | | 8y=(4y+36) | | 6x+3=15x+45 | | 3x+1=4+(2x) | | 9x+29=10x | | 5x-10-8x+1=15 | | −4(x+7)=−2(9−12x) | | 1/10n=50 | | 6x-22x+13=180 |